Off-Line Writer Verification: A Comparison of a Hidden Markov Model (HMM) and a Gaussian Mixture Model (GMM) Based System
نویسنده
چکیده
In this paper, we introduce and compare two off-line, text independent writer verification systems. At the core of the first system are Hidden Markov Model (HMM) based recognizers. The second system uses Gaussian Mixture Models (GMMs) to model a person’s handwriting. Both systems are evaluated on two test sets consisting of unskillfully forged and skillfully forged text lines, respectively. In this comparison, different confidence measures are considered, based on the raw log-likelihood score, the cohort model approach, and the world model approach.
منابع مشابه
An Investigation of Automatic Phonetic-Unit Selection for Forensic Voice Comparison
A hybrid Hidden Markov Model (HMM) Gaussian Mixture Model (GMM) system was proposed to automatically select tokens of /iau/, /ai/, /ei/, /m/ and /n/ in a database of recordings of Standard-Chinese speech collected under studio-clean, mobile-landline degraded and mismatched recording conditions. The FVC systems constructed were all MFCC GMM-UBM systems, but based on different portions of the rec...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملText Dependent Speaker Verification Using Un-Supervised HMM-UBM and Temporal GMM-UBM
In this paper, we investigate the Hidden Markov Model (HMM) and the temporal Gaussian Mixture Model (GMM) systems based on the Universal Background Model (UBM) concept to capture temporal information of speech for Text Dependent (TD) Speaker Verification (SV). In TD-SV, target speakers are constrained to use only predefined fixed sentence/s during both the enrollment and the test process. The t...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملInvestigation of Frame Alignments for GMM-based Text-prompted Speaker Verification
The frame alignment acts as an important role in GMM-based speaker verification. In text-prompted speaker verification, it is common practice to use the transcriptions to align speech frames to phonetic units. In this paper, we compare the performance of alignments from hidden Markov model (HMM) and deep neural network (DNN), using the same training data and phonetic units. We incorporate a pho...
متن کامل